메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
한국경영과학회 한국경영과학회 학술대회논문집 한국경영과학회 2005년 추계학술대회 및 정기총회
발행연도
2005.10
수록면
321 - 333 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
With the limited frequency spectrum and an increasing demand for cellular communication services, the problem of channel assignment becomes increasingly important. However, finding a conflict free channel assignment with the minimum channel span is NP hard. As demand for services has expanded in the cellular segment, sever innovations have been made in order to increase the utilization of bandwidth. The innovations are cellular concept, dynamic channel assignment and hierarchical network design. Hierarchical network design holds the public eye because of increasing demand and quality of service to mobile users. We consider the frequency assignment problem and the base station placement simultaneously. Our model takes the candidate locations emanating from this process and the cost of assigning a frequency, operating and maintaining equipment as an input. In addition, we know the avenue and demand as an assumption. We propose the network about the profit maximization. This study can apply to GSM(Global System for Mobile Communication) which has 70% portion in the world. Hierarchical network design using GA(Genetic Algorithm) is the first three-tier (Macro, Micro, Pico) model. We increase the reality through applying to EMC (Electromagnetic Compatibility Constraints). Computational experiments on 72 problem instances which have 15~40 candidate locations demonstrate the computational viability of our procedure. The result of experiments increases the reality and covers more than 90% of the demand.

목차

Abstract
1. 서론
2. 기존연구 고찰
3. 다중계층 셀룰러 네트워크 및 채널할당
4. 다중계층 셀룰러 네트워크 모형
5. 유전자 알고리즘을 적용한 해 절차
6. 실험 및 분석
7. 결론 및 추후 연구 방향
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-325-017270763