메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
네트워크가 급속도로 발달함에 따라, 네트워크 상에서 발생되는 트래픽 데이타를 대상으로 마이닝 기법을 적용하려는 연구가 활발히 진행되고 있다. 그러나 네트워크 트래픽 데이타를 대상으로 수행되는 마이닝 작업은 네트워크 사용자의 프라이버시를 침해할 여지가 있다는 문제점이 있다. 본 논문에서는 대용량 네트워크 트래픽 데이타를 대상으로 사이트의 프라이버시를 보호하면서 마이닝 결과의 정확성과 실용성을 보장할 수 있는 효율적인 순차 패턴 마이닝 기법을 제안한다. 제안된 기법은, N-저장소 서버 모델과 정보 유지 대체 기법을 사용함으로써, 각 사이트에 저장되어 있는 네트워크 데이타를 공개하지 않은 상태에서 순차 패턴 마이닝을 수행한다. 또한 후보 패턴의 발생 여부를 신속히 결정할 수 있는 메타 테이블을 유지하여 전체 마이닝 과정이 효율적으로 진행되도록 한다. 네트워크 상에서 발생한 실제 트래픽 데이타를 대상으로 다양한 실험을 수행한 결과 제안된 기법의 효율성과 정확성을 확인할 수 있었다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 문제 정의
4. 제안하는 순차 패턴 마이닝 기법
5. 성능 평가
6. 결론
참고문헌
저자소개

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017561690