메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한기계학회 Journal of Mechanical Science and Technology Journal of Mechanical Science and Technology Vol.21 No.7
발행연도
2007.7
수록면
1,058 - 1,065 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper presents a new fault diagnosis procedure for rotating machinery using the wavelet packets-fractal technology and a radial basis function neural network. The main purpose is to investigate different fault conditions for rotating machinery, such as imbalance, misalignment, base looseness and combination of imbalance and misalignment. In this study, we measured the non-stationary vibration signals induced by these fault conditions. Applying wavelet packets transform to these signals, the fractal dimension of each frequency channel was extracted and the box counting dimension was used to depict the failure characteristics of the fault conditions. The failure modes were then identified by a radial basis function neural network. An experiment was conducted and the results showed that the proposed method can detect and recognize different kinds of fault conditions. Therefore, it is concluded that the combination of wavelet packets-fractal technology and neural networks can provide an effective method to diagnose fault conditions of rotating machinery.

목차

Abstract
1. Introduction
2. Theory
3. Experimental analysis and discussion
4. Conclusion
References

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-550-016767193