메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
유비쿼터스 컴퓨팅은 일상생활 속에 편재해 있는 PDA 또는 모바일 폰 등의 무선 단말기를 이용하여 사용자가 언제, 어디서나 유용한 서비스를 받을 수 있는 환경을 제공한다. 이는 대용량 데이터베이스에 저장된 지능형 멀티 모바일 에이전트의 통신 데이터를 분석하여 모바일 유저의 위치에 따른 요청된 유용한 서비스정보를 추출할 수 있게 되었으며, 이를 통한 효율적인 사용자 서비스는 물론 광고 등의 새로운 이익 창출로 이어져왔다. 그러나 기존 위치정보만을 이용한 서비스정보의 추출은 단순히 통계적인 빈발 행동패턴만을 추출하여 시간에 따른 사용자의 서비스 요청에 능동적으로 대처할 수 없을 뿐만 아니라 원치 않는 서비스정보를 제공하는 문제점을 야기 시켰다. 이 논문에서는 시간을 고려한 모바일 사용자의 유용한 행동패턴 추출을 위한 효율적인 마이닝 기법인 시간대별 모바일 사용자 행동패턴 및 메모리 적재에 용이한 새로운 콤팩트한 데이터 구조를 제안한다. 이는 사용자의 동적인 움직임에 따른 실시간적 서비스를 가능하게 하며, 더 나아가 유비쿼터스 컴퓨팅 환경에서 중요한 이슈인 데이터의 메모리 적재가 용이 할 뿐만 아니라 접근속도의 향상 및 메모리 사용이 적다는 이점이 있다.

목차

요약
1. 서론
2. 관련연구
3. 시스템 구성
4. 문제 정의
5. 효율적인 마이닝 기법: 시간대별 모바일 사용자 행동패턴
6. 성능평가
7. 결론 및 향후 연구 과제
감사의 글
참고 문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-015982911