메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한기계학회 Journal of Mechanical Science and Technology Journal of Mechanical Science and Technology Vol.22 No.1
발행연도
2008.1
수록면
34 - 40 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
Much research has been conducted to simulate the hydroplaning phenomenon of tires by using commercial explicit FEM (finite element method) codes such as MSC.Dytran and LS-DYNA. However, it takes a long time to finish such a simulation because its model has a great number of Lagrangian and Eulerian elements, and a contact should be defined between the two different types of elements. The simulation results of the lift force and the contact force are very oscillatory. Thus, in this study a new methodology was proposed for the hydroplaning simulation by using two separate mathematical models. An FDM (finite difference method) code was developed to solve Navier-Stokes and continuity equations and to obtain the pressure distribution around a tire with the inertial and viscous effects of water taken into account. An FE tire model was used to obtain the deformed shape of the tire due to the vertical load and the pressure distribution. The two models were iteratively used until a converged pressure distribution was obtained. Since the converged pressure distribution could not be obtained near or at the contact zone due to very shallow water, an asymptotic method was also proposed to estimate the pressure distribution. This new simulation methodology was applied to a straight-grooved tire, and its hydroplaning speed was finally determined for a water depth of 5 ㎜, 10 ㎜, 15 ㎜ and 20 ㎜. Moreover, a new simulation methodology using LS-DYNA was proposed, and the two methodologies were compared in terms of accuracy and efficiency.

목차

Abstract
1. Introduction
2. Methodology using FDM and FEM
3. Methodology using LS-DYNA
4. Comparison of two methodologies
5. Conclusions
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-550-016214511