메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국기상학회 Asia-Pacific Journal of Atmospheric Sciences 한국기상학회지 제41권 제6호
발행연도
2005.12
수록면
1,125 - 1,135 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
In this study, 10-day mean July precipitation anomalies for the period 1990-2001 downscaled dynamically from AGCM have been corrected using Multiple Linear Regression (MLR) and nonlinear Artificial Neural Network (ANN) methods, and the results are analyzed for the determination of the optimal Model Output Statistics (MOS) method applicable to the regional precipitation forecasting over South Korea. The dynamically downscaled precipitation anomalies are cross-validated respectively, by MLR and ANN methods. Overall, the corrected results are better than the uncorrected one compared with the observation, and the ANN-corrected results are found to be more realistic than those of the MLR-corrected. In particular, the cross-validated time series analysis shows that the ANN method has better capability in reproducing heavy rainfall. Heidke Skill Score based on a trisectional forecast for the cross-validated precipitation shows that ANN-corrected scores are closer to 1 over the whole domain, which implies that the ANN method has high skill in correcting precipitation forecast. Brier Skill Score based on the occurrence and non-occurrence of precipitation event also indicates that ANN method has an outstanding predictability of precipitation. The fact that the ANN-corrected results are more similar to the observation than those of the MLR-corrected implies that the non-linear function applied to ANN algorism might be more efficient and suitable in capturing non-linear characters of precipitation than a linear function. Thus it is concluded that precipitation predictability can be improved dramatically using nonlinear MOS such as ANN.

목차

Abstract
1. 서론
2. 실험 방법
3. 분석결과
4. 요약 및 결론
사사
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-453-016238951