메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국기상학회 대기 대기 Vol.16 No.4
발행연도
2006.12
수록면
359 - 370 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Terrain height variance spectra for the Korean mountain region are calculated in order to determine an adequate grid size required to resolve terrain forcing on mesoscale model simulation. One-dimensional spectral analysis is applied to specifically the central-eastern part of the Korean mountain region, where topographical-scale forcing has an important effect on mesoscale atmospheric flow. It is found that the terrain height variance spectra in this mountain region has a wavelength dependence with the power law exponents of 1.5 at the wavelength near 30 km, but this dependence is steeply changed to 2.5 at the wavelength less than 30 km. For the adequate horizontal grid size selection on mesoscale simulation two-dimensional terrain height spectral analysis is also performed. There is no directionality within 50% of spectral energy region, so one-dimensional spectral analysis can be reasonably applied to the Korea Peninsula. According to the spectral analysis of terrain height variance, the finer grid size which is higher than 6 km is required to resolve a 90% of terrain variance in this region. Numerical simulation using WRF (Weather Research and Forecasting Model) was performed to evaluate the effect of different terrain resolution in accordance with the result of spectral analysis. The simulated results were quantitatively compared to observations and there was a significant improvement in the wind prediction across the mountain region as the grid space decreased from 18 km to 2 km. The results will provide useful guidance of grid size selection on mesoscale topographical simulation over the Korean mountain region.

목차

Abstract
1. 서론
2. 지형 분산 스펙트럼
3. 중규모 모델 수치모의
4. 요약 및 결론
감사의 글
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-453-016266037