메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
센서 네트워크를 사용하는 응용분야에 따라 보다 고차원적인 데이타 처리를 필요로 하는 경우 모든 센서 노드의 수집 데이타를 싱크 노드로 전송한다. 수집된 데이타는 일반적으로 센서 네트워크의 환경적인 특성상 시간적으로 혹은 공간적으로 연관성을 지닌다. 이러한 연관성은 싱크 노드가 일부의 데이타만 수집하고도 모든 데이타를 복원할 수 있는 기회를 제공한다. 센서 네트워크에서는 데이타 수집을 위한 기법으로 클러스터링 기법을 널리 사용한다. 하지만 기존의 클러스터링 기법의 경우 수집한 데이타의 연관성을 고려하지 않고, 센서 노드의 지역성(locality)만을 고려하여 클러스터를 생성하기 때문에 이러한 기회를 활용하기에 비효율적이다. 본 논문에서는 수집된 데이타를 중심으로 클러스터를 생성하고, 싱크 노드로 전송되는 데이타의 크기를 획기적으로 줄일 수 있는 클러스터링 기법을 제안한다. 제안하는 클러스터링 기법의 우수함을 보이기 위해 시뮬레이션을 통한 성능 평가를 수행하였으며, 그 결과 기존 기법들에 비해 네트워크 트래픽이 약 4~40% 감소하고, 네트워크의 수명이 약 20~30% 연장되었다.

목차

요약
Abstract
1. 서론
2. 관련연구
3. 분석: 클러스터링 기법을 위한 데이타 제한 기법 적용
4. 제안하는 클러스터링 기법
5. 성능 평가
6. 결론
참고문헌

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2010-569-001404609