메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
수많은 웹 정보 중에서 사용자가 원하는 정보를 찾아내는 것은 매우 어렵다. 검색 엔진은 웹 정보를 요약하였다가 사용자의 질의에 따라 상대적 중요도와 정보의 적합도를 반영한 검색순위를 제공한다. 그러나 이 순위는 개별 사용자가 원하는 정보를 상위 순위에 보여주는데 제한이 있다. 본 논문에서는 사용자의 검색 의도가 질의에 가장 잘 나타난다고 보고 질의의 의미를 잘 반영하는 웹 정보를 선택적으로 상위 순위화하기 위하여 질의 내부의 단어 인접도를 이용한 재순위화 방법을 제시하였다. 실험 결과 매우 간단한 방법으로 사용자가 요구하는 정보를 75.8%의 확률로 찾아낼 수 있으며, 선별된 정보들의 선택적인 순위 상승으로 13~20%의 검색 효율 향상을 기대할 수 있다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 단어 인접도의 산정
4. 실험
5. 결론 및 향후 연구
참고문헌

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2010-569-001418145