메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
전력전자학회 JOURNAL OF POWER ELECTRONICS JOURNAL OF POWER ELECTRONICS Vol.8 No.2
발행연도
2008.4
수록면
181 - 191 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The task performed by induction motors grows increasingly complex in modern industry and hence improvements are sought in the field of fault diagnosis. It is essential to diagnose faults at their very inception, as unscheduled machine down time can upset critical dead lines and cause heavy financial losses. Artificial intelligence (AI) techniques have proved their ability in detection of incipient faults in electrical machines. This paper presents an application of AI techniques for the detection of inter-turn insulation and bearing wear faults in single-phase induction motors. The single-phase induction motor is considered a proto type model to create inter-turn insulation and bearing wear faults. The experimental data for motor intake current, rotor speed, stator winding temperature, bearing temperature and noise of the motor under running condition was generated in the laboratory. The different types of fault detectors were developed based upon three different AI techniques. The input parameters for these detectors were varied from two to five sequentially. The comparisons were made and the best fault detector was determined.

목차

ABSTRACT
1. Introduction
2. Identification of motor parameters and application AI techniques for fault detection
3. Comparative results and their analysis
4. Conclusion
References

참고문헌 (27)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2010-560-001420617