메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The semi-convexity for planar shapes has been recently introduced in [2]. As a generalization of the convexity, semi-convexity is closed under the Minkowski sum. But the definition of semi-convexity requires that the shape boundary should satifisfy a differentiability condition C<SUP>1:1</SUP>, which means that it should be possible to take the normal vector field along the domain's extended boundary. In view of the fact that the semi-convexity is a most natural generalization of the convexity in many respects, this is a severe restriction for the semi-convexity, since the convexity requires no such a priori differentiability condition. In this paper, we generalize the semi-convexity to the closure of the class of semi-convex M-domains for any Minkowski class M, and show that this generalized semi-convexity is also closed under Minkowski sum.

목차

ABSTRACT
1. INTRODUCTION
2. SEMI-CONVEXITY AND MINKOWSKI SUM
3. GENERALIZED SEMI-CONVEXITY
REFERENCES

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-410-014694147