메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 퍼지 및 지능 시스템학회 논문지 제14권 제5호
발행연도
2004.8
수록면
563 - 570 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Genetic algorithms have been successfully applied to various optimization problems belonging to NP-hard problems. The sequential ordering problems(SOP) and the job shop scheduling problems(JSP) are well-known NP-hard problems with strong influence on industrial applications. Both problems share some common properties in that they have some imposed precedence constraints. When genetic algorithms are applied to this kind of problems, it is desirable for genetic operators to be designed to produce chromosomes satisfying the imposed precedence constraints. Several genetic operators applicable to such problems have been proposed. We call such genetic operators precedence-preserving genetic operators. This paper presents three existing precedence-preserving genetic operators : Precedence -Preserving Crossover(PPX), Precedence-preserving Order-based Crossover (POX), and Maximum Partial Order/Arbitrary Insertion(MPO/AI). In addition, it proposes two new operators named Precedence-Preserving Edge Recombination (PPER) and Multiple Selection Precedence-preserving Order-based Crossover (MSPOX) applicable to such problems. It compares the performance of these genetic operators for SOP and JSP in the perspective of their solution quality and execution time.

목차

Abstract
1. 서론
2. Genetic Algorithms
3. Precedence Preserving Genetic Operators
4. Experiments
5. Conclusions
References
저자소개

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-014867846