메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
유비쿼터스 환경의 추천 시스템에서는 협력적 필터링을 위하여 컨텍스트 정보를 사용하고 있으나, 컨텍스트 정보의 부족으로 인하여 추천 결과가 정확하지 않는 경우가 발생하게 된다. 이러한 문제를 해결하기 위하여 컨텍스트 정보와 더불어 사용자 프로파일의 서비스 이력 정보를 사용하였으나, 사용자 프로파일의 서비스 이력 정보는 시간이 지남에 따라 사용자의 기호가 변하거나 유행에 영향을 받을 수 있는 문제점이 있다. 또한 컨텍스트 정보와 사용자 프로파일의 서비스 이력 정보는 상황에 따라 적절히 연동하지 못하여 부정확한 예측을 할 수가 있다.
본 논문에서는 시간의 경과에 따라 사용자의 기호나 유행이 변하는 경우, 사용자 프로파일의 서비스 이력 정보들을 일률적인 값으로 적용하는 것이 아니라 시간에 따라 가중치를 달리 적용하는 방법을 사용하였다. 그리고 컨텍스트 정보와 사용자 프로파일의 서비스 이력 정보가 상황에 따라 적절히 연동하지 못하는 문제는 협력적 필터링하여 나온 결과에 컨텍스트 정보와 사용자 프로파일의 서비스 이력 정보의 가중치를 달리 적용하여 통합함으로써 예측성을 높일 수 있었다.

목차

요약
1. 서론
2. 관련 연구
3. 시간적 변화를 고려한 서비스 추천 시스템
4. 실험 및 평가
5. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-014895508