메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 퍼지 및 지능 시스템학회 논문지 제14권 제2호
발행연도
2004.4
수록면
136 - 141 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
소매점 거래 데이터와 단백질 시퀀스, 웹 로그 등과 같은 상업적이거나 과학적인 데이터의 폭발적인 증가를 볼 수 있다. 이런 데이터들은 순서적인 면을 가지고 있는 시퀀스 데이터들이다. 그러나, 순서적인 면을 고려한 클러스터링 알고리듬은 소수이다. 따라서, 본 연구에서는 시퀀스 데이터들을 클러스터링 하는 방법을 연구한다. 시퀀스들 간의 유사도를 계산하기 위한 새로운 유사도를 제안한다. 또한, 유사도를 효율적으로 계산하기 위한 방법과 클러스터링 방법도 제안한다. 계층적 클러스터링 알고리듬은 높은 계산량을 가지고 있기에, 새로운 클러스터링 방법이 요구된다. 그러므로, 본 연구에서는 샘플링과 k-nn 방법을 이용한 확장성 있는 클러스터링 방법을 제안한다. 실제 데이터 셋과 합성 데이터 셋을 이용하여, 본 연구에서 제안하는 방법이 기존 방법보다 성능이 우수함을 보여준다.

목차

요약
Abstract
1. 서론
2. 기존 연구
3. 시퀀스들 간의 유사도
4. 확장성 있는 클러스터링 방법
5. 실험결과
6. 결론
참고문헌
저자소개

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-014902660