메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 논문에서는 연속적인 뇌파 분류를 위해 비음수 텐서 분해를 이용한 특징 추출과 비터비 알고리즘을 이용한 연속적인 데이타의 클래스 분류를 결합한 새로운 알고리즘을 제시한다. 비음수 텐서 분해는 이미 스펙트럼 데이타에 대해 뇌파의 주요한 특징을 잘 추출한다고 알려진 비음수 행렬 분해의 확장으로써 행렬이라는 제한된 틀에서 벗어나 데이타가 가지는 다양한 차원으로의 확대가 가능하다. 뇌-컴퓨터 인터페이스 컴피티션을 통해 공개된 데이타를 이용한 실험을 통해 제안된 방법의 유용함을 증명하도록 하겠다.

목차

요약
Abstract
1. 서론
2. 비음수 텐서 분해
3. 제안된 알고리즘
4. 실험결과
5. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-014980671