메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
단서구문 및 어휘 쌍 확률 등을 이용하면 일정한 영역의 문서에서 사용된 용어의 원인이 되거나 결과를 나타나는 관련어들을 찾을 수 있다. 본 논문에서는 이러한 각 용어의 선행 원인과 후행 결과를 인과관계 정보라고 정의한다. 인과관계 정보가 유사한 용어들은 서로 유사한 개념에 속한다고 가정한다면, 용어의 직/간접적 인과관계로서 용어 온톨로지에서 그 용어가 속할 집합을 결정하는 데 도움을 줄 수 있다. 본 논문에서는 각 용어의 인과관계가 용어 군집화를 위한 유용한 문맥 정보의 하나라는 것을 실험을 통해 증명하였다. 속성으로 사용된 인과관계는 대용량의 코퍼스로부터 비지도식 학습방법을 통해 자동 습득하였으며, 그 정확도는 74.84%를 보였다. 1659개 용어에 대한 군집화 실험 결과 70.02%의 정확도를 보였으며, 어휘 유사도만을 사용한 경우에 비해 32.9%의 적용도 향상을 보였다.

목차

요약
1. 서론
2. 관련 연구
3. 용어 군집화
4. 평가
5. 결론
참고 문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0