메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 한국지능시스템학회 논문지 제19권 제1호
발행연도
2009.2
수록면
25 - 33 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (8)

초록· 키워드

오류제보하기
최근 시계열 예측에 결론부에 선형식을 갖는 TS 퍼지 모델이 많이 이용되고 있는데, 이의 예측 성능은 정상성과 같은 데이터의 특성과 밀접한 관련이 있다. 그러므로 본 논문에서는 특히 비정상 시계열 예측에 매우 효과적인 새로운 예측 기법 을 제안하였다. 시계열의 패턴이나 규칙성을 잘 끌어내기 위한 데이터 전처리 과정을 도입하고 다중 모델 TS 퍼지 예측기를 구성한 뒤, 러프집합을 이용한 적응 모델 선택 기법에 의해 입력 데이터의 특성에 따라 가변적으로 적합한 예측 모델을 선택하여 시계열 예측이 수행되도록 하였다. 마지막으로 예측 오차를 감소시키기 위하여 오차 보정 메커니즘을 추가함으로써 예측 성능을 더욱 향상시켰다. 시뮬레이션을 통해 제안된 기법의 성능을 검증하였다, 제안된 기법은 예측 모델 구현과 예측 수행 과정에서 시계열 데이터의 특성들을 잘 반영할 수 있으므로 불확실성과 비정상성을 갖는 시계열의 예측에 매우 효과적으로 이용될 수 있을 것이다.

목차

요약
Abstract
1. 서론
2. 다중 모델 퍼지 예측 시스템의 구성
3. 데이터의 전처리
4. 다중 모델 퍼지 예측기의 구현
5. 적응 모델 선택 메커니즘
6. 오차 보정 메커니즘
7. 컴퓨터 시뮬레이션 및 검토
8. 결론
참고문헌
저자소개

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-019451486