메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한건축학회 대한건축학회 논문집 - 구조계 大韓建築學會論文集 構造系 第25卷 第9號
발행연도
2009.9
수록면
181 - 190 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Unlike the normal project-leveled construction projects, MXD(Mixed Used Development) projects considering the stakeholder, cost, and duration, require the higher level of strategy and skill for successful completion of the project. MXD projects found to have a couple of problems, such as the complicated relationship of stakeholder, unclear business field between the public and private sectors, unestablished project process, insufficient experience and human resources, and the solutions for them, such as a supporting tool, are urgently required. In case of mega projects with a large scale of project cost and duration, more accurate project feasibility should be studied so that construction cost at planning phase is predicted and either owners or developing companies could make a better decision. However, both the existing and on-going researches on predicting construction cost are focusing on normal project-leveled project, which identifies that more researches predicting the program-leveled projects' construction cost, such as MXD, should be done.
Therefore, this study intended to develop a construction cost prediction model based on CBR (Case-Based Reasoning) methodology so that it could possibly support a decision-making specifically at the pre-construction phase (defined as planning phase in this study). Also, it is expected that historical construction cost could be collected and utilized much more efficiently by developing construction Cost's Breakdown Structure(CBS) and Data Base(DB) which are essentially necessary for the CBR prediction model.

목차

Abstract
1. 서론
2. 이론적 고찰
3. 비용분류체계 및 공사비 Data Base 구축
4. CBR기반 공사비 예측모델 개발
5. 공사비 예측모델 검증
6. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-540-018855263