메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한토목학회 KSCE JOURNAL OF CIVIL ENGINEERING KSCE JOURNAL OF CIVIL ENGINEERING Vol.11 No.1
발행연도
2007.1
수록면
57 - 64 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper attempts to investigate, in detail, the behaviour of the selected conceptual rainfall runoff model structures (a Penman-based model and a probability distribution-based model) by using a novel method of dynamic parameter identifiability analysis (DYNIA). Two UK catchments were used as case studies. This paper shows that potential weaknesses of model structures are uncovered by this analysis; a) the optimum parameter shifts over the time domain, and b) insensitive model parameters shift over the wet period and dry period. However, attempting to interpret these results, and use them as a basis for improving the model structure proved difficult. The dynamic relationships between the model parameter and the variable soil moisture state in the model have been considered based on these analyses. Possible model modifications have been suggested: a) Making the proportion of rainfall that bypasses the soil stores responsive to soil wetness, rather than a constant, and b) Directing this bypassed rainfall to the fast routing reservoirs rather than splitting it between fast and slow reservoirs. However, substantial and well-founded changes in the model structures had marginal effect on the time-series output. The lack of improved performance raises a number of questions and points the way forward for more research. The results may suggest that improvement of the model performance depends more on the quality of data (or catchment information) rather than the hydrological representation of the different catchments.

목차

Abstract
1. Introduction
2. Models, Analytical Tools and Case Study Catchments
3. Results
4. Model Modifications
5. Conclusions
6. References

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-531-019175023