메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김성진 (한국과학기술원) 정진완 (한국과학기술원) 이석룡 (한국외국어대학교) 김덕환 (인하대학교)
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회논문지 : 데이타베이스 정보과학회논문지 : 데이타베이스 제36권 제6호
발행연도
2009.12
수록면
434 - 445 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
내용 기반 영상 검색(content based image retrieval)은 영상 자체의 정보를 이용하여 유사영상을 검색하는 기법이다. 하지만 멀티미디어 데이터는 텍스트 데이터와 달리 얻을 수 있는 데이터가 정확하지 않고 또한 시스템에서 표현되는 데이터의 저차원(low-level)의 표현법과 사용자가 인식하는 고차원(high-level)의 개념(concept)은 상당한 차이를 나타내게 된다. 즉 시스템 상에서 벡터들로 표현된 영상데이터들이 벡터스페이스 상에서는 가깝지만 실제 사용자는 유사하지 않다고 인식하는 문제점이 발생한다. 이를 의미적 간극(semantic-gap) 문제라고 부른다. 이런 의미적 간극 문제로 인해 영상검색 결과는 좋지 않은 성능을 보이게 된다. 이를 해결하기 위해 사용자의 피드백 정보를 이용하여 질의를 수정하는 적합성 피드백 기법이 널리 사용되고 있다. 하지만 기존의 적합성 피드백은 사용자의 관심영역(region-of-interest, 이하 ROI)를 고려하지 않아 적합한(relevant) 영역의 모든 영역들이 새로운 질의 점을 계산하는 과정에서 사용된다. 시스템은 그 스스로 사용자 관심영역을 알지 못하기 때문에 적합성 피드백을 영상수준(image-level)으로 진행하기 때문이다. 이 논문에서는 복잡한 위성영상 영역 검색에서 관심영역을 사용자가 직접 선택하도록 유도하여 더욱 정확한 질의 점을 계산하여 정확도를 높이는 사용자 관심영역 적합성 피드백 방법을 제시한다. 또한 사용자가 선택하지 않은 부정확한 영상 정보를 이용하여 정확도를 향상시키는 프루닝 기법도 함께 제시한다. 실험을 통하여 사용자 관심영역 적합성 피드백의 우수성과 함께 제안한 프루닝 기법의 효율성도 함께 보여준다.

목차

요약
Abstract
1. 서론
2. 관련연구
3. 사용자 관심영역을 이용한 적합성 피드백
4. 실험 및 결과
5. 결론
참고문헌

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2010-569-001635193