메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
하정우 (서울대학교) 장병탁 (서울대학교)
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회논문지 : 소프트웨어 및 응용 정보과학회논문지 : 소프트웨어 및 응용 제37권 제2호
발행연도
2010.2
수록면
120 - 128 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
하이퍼네트워크는 하이퍼그래프의 일반화된 모델로 학습과정에 있어 진화적 개념을 도입한 확률 그래프 기반의 기계학습 알고리즘으로서 최근 들어 여러 다양한 분야에 응용되고 있다. 그러나 하이퍼 네트워크 모델은 데이터와 모델을 구성하는 하이퍼에지 간의 동등비교를 기반으로 하는 학습과정의 특성상 데이터를 구성하는 인자들이 범주형인 경우에만 학습 및 모델링이 가능하고 실수 값으로 표현된 데이터를 학습하기 위해서는 이산화 등의 전처리가 선행되어야 한다는 한계점이 있다. 하지만 데이터 전처리에 있어 이산화 하는 과정은 필연적으로 정보손실이 발생할 수밖에 없기 때문에 이는 분류 예측 모델의 성능저하를 유발하는 원인이 될 수 있다. 이러한 기존 하이퍼네트워크 모델의 한계점을 극복하기 위해 본 연구에서는 별도의 데이터 전처리 과정을 거치지 않고 실수 인자로 구성된 데이터의 패턴 학습이 가능한 개선된 하이퍼네트워크 모델을 제안한다. 여러 실험 결과를 통해 제안한 하이퍼네트워크 모델은 기존 하이퍼 네트워크 모델에 비해 실수형 데이터에 대한 학습 및 분류 결과 성능이 향상되었을 뿐 아니라, 다른 여러기계학습 방법들에 비해서도 경쟁력 있는 성능이 나타남을 확인하였다.

목차

요약
Abstract
1. 서론
2. 하이퍼네트워크 모델
3. 실수인자 데이터 모델링 하이퍼네트워크 모델
4. 실험 및 결과
5. 결론 및 향후과제
참고문헌

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2010-569-002622894