메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김경호 (조선대학교) 정윤수 (한국전자통신연구원) 이상웅 (조선대학교)
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회논문지 : 컴퓨팅의 실제 및 레터 정보과학회논문지 : 컴퓨팅의 실제 및 레터 제16권 제4호
발행연도
2010.4
수록면
457 - 461 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
얼굴 인식 분야는 오래전부터 꾸준히 연구되어 왔지만, 아직도 실용적인 얼굴 인식은 이루어지지 않고 있다. 이는 실제 얼굴 인식 시스템의 입력 영상의 경우, 실험실에서 획득된 얼굴 영상과는 달리 안경이나 스카프, 헤어스타일 등에 의해서 가려진 얼굴 영상인 경우에 인식 성능이 매우 저하되는 것에 기인한다. 이러한 비 얼굴 요소를 처리하기 위해, 최근 수년간 다양한 방식의 비 얼굴 요소처리 방법이 있었으나, 만족할만한 성능을 보이지 못했다. 본 논문에서는, 최근 관련 방법 중에서 특징 공간에서 최소 거리의 볼을 찾아 근사값을 추정하는 방식인 SVDD를 이용하는 비 얼굴 요소 복원 방법을 제안하고, 실험을 통해 성능을 평가한다. 제안 방법의 실효성을 검증하기 위해, 비 얼굴 요소 부분을 점진적으로 증가시켜 복원하는 실험 등을 통해 실험한 결과, 제안 방법은 상당한 수준의 실효성을 지니고 있음을 확인하였다.

목차

요약
Abstract
1. 서론
2. 지지 벡터 데이터 기술
3. 비 얼굴 요소 복원 방법
4. 실험 방법
5. 실험 결과 분석
6. 결론 및 향후 계획
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2010-569-003296047