메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Hansang Lee (고려대학교) Hanmin Lee (한국철도기술연구원) Changmu Lee (한국철도기술연구원) Gilsoo Jang (고려대학교) Gildong Kim (한국철도기술연구원)
저널정보
대한전기학회 Journal of Electrical Engineering & Technology Journal of Electrical Engineering & Technology Vol.5 No.2
발행연도
2010.6
수록면
228 - 238 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
There is an increasing interest in research to help overcome the energy crisis that has been focused on energy storage applications in various parts of power systems. Energy storage systems are good at enhancing the reliability or improving the efficiency of a power system by creating a time gap between the generation and the consumption of power. As a contribution to the various applications of storage devices, this paper describes a novel algorithm that determines the power and storage capacity of selected energy storage devices in order to improve upon railroad system efficiency. The algorithm is also demonstrated by means of simulation studies for the Korean railroad lines now in service. A part of this novel algorithm includes the DC railroad powerflow algorithm that considers the mobility of railroad vehicles, which is necessary because the electric railroad system has a distinct distribution system where the location and power of vehicles are not fixed values. In order to derive a more accurate powerflow result, this algorithm has been designed to consider the rail voltage as well as the feeder voltage for calculating the vehicle voltage. By applying the resultant control scheme, the charging or discharging within a specific voltage boundary, energy savings and a substation voltage stabilization using storage devices are achieved at the same time.

목차

Abstract
1. Introduction
2. Railroad Powerflow Algorithm with ESS
3. Configurations of Seoul Metro Line 8
4. Case Studies
5. Conclusions
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2010-560-002993839