메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Yong-Cheol Kang (전북대학교) Byung-Eun Lee (전북대학교) En-Shu Jin (전북대학교)
저널정보
대한전기학회 Journal of Electrical Engineering & Technology Journal of Electrical Engineering & Technology Vol.5 No.2
발행연도
2010.6
수록면
255 - 263 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The compensated-current-differential relay uses the same restraining current as a conventional relay, but the differential current is modified to compensate for the effects of the exciting current. Delta winding current is necessary to obtain the modified differential current for a Y-Δ transformer. This paper describes an estimation algorithm of the delta winding current and its application to a compensated-current-differential relay for a Y-Δ transformer. Prior to saturation, the core-loss current is calculated and used to modify the differential current. When the core first enters saturation, the initial value of the core flux is obtained by inserting the modified differential current into the magnetization curve. This flux value is used to derive the magnetizing current and consequently the modified differential current. The operating performance of the proposed relay was compared against a conventional current differential relay with harmonic blocking. Test results indicate that the proposed relay remained stable during severe magnetic inrush and over-excitation, and its operating time is significantly faster than a conventional relay. The relay is unaffected by the level of remanent flux and does not require an additional restraining or blocking signal to maintain stability. This paper concludes by implementing the proposed algorithm into a prototype relay based on a digital signal processor.

목차

Abstract
1. Nomenclature
2. Introduction
3. Compensated-current-differential Relay for Y-? Transformer Protection
4. Case Studies
5. Hardware Implementation Test
6. Conclusion
Acknowledgements
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2010-560-002993804