메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
문성룡 (원광대학교) 신성 (원광대학교)
저널정보
대한전자공학회 전자공학회논문지-SP 電子工學會論文誌 第47卷 SP編 第3號
발행연도
2010.5
수록면
11 - 22 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 컨텍스트 기반의 지능형 영상 감시 시스템 구현에 관한 연구로써 기존 연구의 시공간적 제약성 및 실시간 처리가 어려운 단점을 보완하여 초당 30 프레임으로 이루어져 있는 저해상도 동영상(320*240)을 대상으로 다양한 환경에서 실시간 처리가 가능한 움직임 검출 및 장면 분석 알고리즘을 제안하고 이를 이용해 동영상 감시 시스템을 구축한다. 먼저 장면 분석을 수행하기 위한 전처리 과정인 움직임 검출 알고리즘에서는 연속된 프레임 중 의미 없는 유사 프레임과 배경을 제거하고 움직임 영역만을 검출하기 위해 웨이브렛 변환과 에지 히스토그램을 이용하여 샷의 경계를 검출한다. 다음으로 키프레임 선정 파라미터에 의해 샷 경계 내 대표 키프레임을 선정하며, 에지 히스토그램 및 수학적 형태론을 이용하여 움직임 영역만을 검출한다. 장면 분석 알고리즘에서는 검출된 객체의 수직 수평 비율과 질량 중심을 통해 재구성된 허프 변환 후의 각도를 이용해 독립 객체 분석을 수행하며, ‘서다, 걷다, 눕다, 앉다’의 4가지 기본 상황 정보를 정의한다. 또한 각 상황의 연결 상태 추정을 통해 일반 상황 및 위급 상황으로 구성되는 단순 상황 모델을 정의함으로써 장면 분석을 수행하며, 제안된 알고리즘의 실시간 처리 가능성을 확인하기 위해 시스템을 구성한다. 제안된 시스템은 저해상도 영상을 대상으로 인식률 면에서 평균 92.5%의 성능을 보였으며, 처리속도는 프레임 당 평균 0.74초로 실시간 처리가 가능함을 확인하였다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 움직임 검출 알고리즘
Ⅲ. 장면 분석 알고리즘
Ⅳ. 시스템 구현
Ⅴ. 모의 실험
Ⅵ. 결론
참고문헌
저자소개

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2010-569-002843653