메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박태정 (고려대학교) 우준명 (서울대학교) 김창헌 (고려대학교)
저널정보
대한전자공학회 전자공학회논문지-CI 電子工學會論文誌 第48卷 CI編 第1號
발행연도
2011.1
수록면
90 - 100 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 연구에서는 연산 부하가 매우 큰 Bio-FET 시뮬레이션을 위해 낮은 비용으로 대규모 병렬처리 환경 구축이 가능한 최신그래픽 프로세서(GPU)를 이용해서 선형 방정식 해법을 수행하기 위한 병렬 Bi-CG(Bi-Conjugate Gradient) 방식을 제안한다. 제안하는 병렬 방식에서는 반도체 소자 시뮬레이션, 전산유체역학(CFD), 열전달 시뮬레이션 등을 포함한 다양한 분야에서 많은 연산량이 집중되어 전체 시뮬레이션에 필요한 시간을 증가시키는 포아송(Poisson) 방정식의 해를 병렬 방식으로 구한다. 그 결과, 이 논문의 테스트에서 사용된 FDM 3차원 문제 공간에서 단일 CPU 대비 연산 속도가 최대 30 배 이상 증가했다. 실제 구현은 NVIDIA의 테슬라 아키텍처(Tesla Architecture) 기반 GPU에서 범용 목적으로 병렬 프로그래밍이 가능한 NVIDIA사의 CUDA(Compute Unified Device Architecture) 환경에서 수행되었으며 기존 연구가 주로 32 비트 정밀도(single floating point) 실수 범위에서 수행된 것과는 달리 본 연구는 64 비트 정밀도(double floating point) 실수 범위로 수행되어 Bi-CG 해법의 수렴성을 개선했다. 특히, CUDA는 비교적 코딩이 쉬운 반면, 최적화가 어려운 특성이 있어 본 논문에서는 제안하는 Bi-CG 해법에서의 최적화 방향도 논의한다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. Bi-CG (Bi-Conjugate Gradient) 해법
Ⅲ. CUDA 아키텍처
Ⅳ. 병렬 연산 최적화 기법
Ⅴ. 실험
Ⅵ. 결론
참고문헌
저자소개

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2012-569-004050976