메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
소인미 (원광대학교) 정성태 (원광대학교)
저널정보
한국멀티미디어학회 멀티미디어학회논문지 멀티미디어학회논문지 제13권 제2호
발행연도
2010.2
수록면
225 - 236 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 카메라 영상 정보와 기울기 센서 정보를 통합한 바이모달 응급상황 인식방법을 제안한다. 제안된 방법은 어느 한 센서가 오작동 하거나 사용자가 착용형 기울기 센서를 착용하지 않거나, 영상 획득의 어려움이 있는 욕실과 같은 곳에 있는 경우에도 응급 상황을 감지하여 센서 간에 상호 협력과 보완을 함으로써 응급 상황을 인식할 수 있다. 본 논문에서는 HMM 학습 및 인식을 통해 걷는 동작, 바닥에 앉는 동작, 소파에 앉는 동작, 눕는 동작, 기절 동작을 판단할 수 있도록 하였다. 영상의 특징 벡터와 기울기 센서의 특징 벡터를 결합하여 학습하고 인식했을 때, 인식률의 향상을 가져올 수 있었다. 또한 다양한 조명의 변화에도 적응적 배경 모델을 통해 움직이는 객체를 강건하게 검출할 수 있어서 높은 인식률을 유지할 수 있었다.

목차

요약
ABSTRACT
1. 서론
2. 특징 벡터 추출
3. HMM을 이용한 학습 및 인식
4. 실험결과
5. 결론
참고문헌

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2012-004-004443471