메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국멀티미디어학회 멀티미디어학회논문지 멀티미디어학회논문지 제9권 제9호
발행연도
2006.9
수록면
1,118 - 1,130 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
데이터 스트림에 대한 기존의 패턴 분석 알고리즘은 대부분 속도 향상과 효율적인 메모리 사용에 대하여 연구되어 왔다. 그러나 기존의 연구들은 새로운 패턴을 가진 데이터 스트림이 입력되었을 경우, 이 전에 분석된 패턴을 버리고 다시 패턴을 분석하여야 한다. 이러한 방법은 데이터의 실시간적인 패턴 분석을 필요로 하는 실제 환경에서는 많은 속도와 계산 비용이 소모된다. 본 논문에서는 끊임없이 입력되는 데이터 스트림의 패턴을 실시간으로 분석하는 방법을 제안한다. 이 것은 먼저 빠르게 패턴을 분석하고 그 다음부터는 이전에 분석된 패턴을 효율적으로 갱신하여 실시간적인 패턴을 얻어내는 방법이다. 데이터 스트림이 입력되면 시간 기반 윈도우로 나누어 여러 개의 순차들을 생성한다. 그리고 생성된 순차들의 정보는 해시 테이블에 입력되어 정해진 개수의 순차가 해시 테이블에 채워질 때마다 해시 테이블에서 패턴을 분석해 낸다. 이렇게 분석된 패턴은 패턴 트리를 형성하게 되고, 이 후에 새로 분석된 패턴들은 이 패턴 트리 안의 패턴 별로 갱신하여 현재 패턴을 유지하게 된다. 새로운 패턴 추가를 위해 패턴을 분석할 때 이전에 이미 발견된 패턴이 Suffix로 나올 수 있다. 그러면 패턴 트리에서 이 전 패턴으로의 포인터를 생성하여 중복되는 패턴 분석으로 인한 계산 시간의 낭비를 방지한다. 그리고 FIFO방법을 사용하여 오랫동안 입력이 안 된 패턴을 손쉽게 제거한다. 패턴이 조금씩 바뀌는 데이터 스트림 환경에서 RSP-DS가 기존의 알고리즘보다 우수하다는 것을 성능 평가를 통하여 증명하였다. 또한 패턴 분석을 수행할 데이터 순차의 개수와 자주 등장하는 데이터를 판별하는 기준을 조절하여 성능의 변화를 살펴보았다.

목차

요약
ABSTRACT
1. 서론
2. 관련 연구
3. RSP-DS (Real time Sequential Patterns analysis in Data Streams)
4. 성능 평가
5. 결론 및 향후 연구
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2012-004-004442878