메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
유주완 (삼성전자) 이종민 (한양대학교) 김회율 (한양대학교)
저널정보
한국멀티미디어학회 멀티미디어학회논문지 멀티미디어학회논문지 제12권 제3호
발행연도
2009.3
수록면
383 - 396 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
뼈 나이 측정은 소아의 내분비계 관련 질병 진단을 위해 소아과에서 널리 사용되는 방법이다. 그러나 전문 인력이 부족하여 자동화된 측정 방법에 대한 꾸준한 요구가 있었다. 따라서 본 논문에서는 패턴 인식 기법을 이용한 자동화된 뼈 나이 측정 알고리즘을 제안한다. 제안하는 알고리즘은 X-ray 영상에서 손가락뼈의 각 부분을 자동으로 분류하는 과정과 분류된 뼈 영상으로부터 정규화된 형상 모델을 추출하는 과정, 그리고 정규화된 형상 모델로부터 뼈 나이를 측정하는 과정으로 구성된다. 제안하는 알고리즘은 능동 형상 모델(Active Shape Model: ASM)을 이용하여 나이 측정에 사용되는 특징값 추출의 정확도를 향상시켰으며, 뼈 나이 분류를 위해 사용된 Support Vector Machine(SVM)의 입력으로 정규화된 형상 모델로부터 얻어진 각 뼈의 크기와 비율을 특징값으로 사용하였다. 성능 평가를 위해서 한양대학교 부속병원에서 제공한 영상에 대해 전문가가 평가한 나이와 제안한 알고리즘을 이용하여 측정된 나이를 통계적으로 비교 분석하였다. 실험을 통하여 본 논문에서 제안한 특징값과 알고리즘으로 뼈 나이를 진단한 결과, 전문가에 의한 결과와 평균 0.679살의 오차 이내의 뛰어난 뼈 나이 측정 성능을 보였다.

목차

요약
ABSTRACT
1. 서론
2. 제안하는 방법
3. 정규화 된 뼈 모델 생성 방법
4. 뼈 나이 인식 알고리즘
5. 실험 및 결과
6. 결론
참고문헌

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2012-004-004430987