메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Sunghoon Jung (부산대학교) Sojung Park (부산대학교) Minhwan Kim (부산대학교)
저널정보
한국멀티미디어학회 한국멀티미디어학회 국제학술대회 MITA 2007
발행연도
2007.8
수록면
461 - 464 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Human detection techniques in outdoor scenes have been studied for a long time to watch suspicious movements or to keep someone from danger. However there are few methods of human detection in overhead or near-field view scenes, while lots of human detection methods in far-field view scenes have been developed. In this paper, a set of four features useful for human detection in overhead view scenes and another one in near-field view scenes are suggested. Eight feature-candidates are first extracted by analyzing geometrically varying characteristics of moving objects in samples of video sequences. Then four most useful features for each view scene in classifying human from other moving objects are selected among them by using a neural network learning technique. Through experiments with hundreds of video sequences, we found that each set of features was very useful for human detection and classification accuracy for overhead view and near-field view scenes was about 99%. The suggested sets of features can be used effectively in a PTZ camera based surveillance system where both the overhead and near-field view scenes appear.

목차

ABSTRACT
1. INTRODUCTION
2. CLASSIFICATION OF CAMERA VIEWS
3. FEATURE0CANDIDATE EXTRACTION
4. SELECTION AND COMPARISION OF USEFUL FEATURE FOR CLASSIFICATION
5. EXPERIMENTAL RESULTS AND DISCUSSIONS
6. CONCLUSIONS
ACKNOWLEDGEMENT
7. REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2012-004-004266056