메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
오승근 (고려대학교) 이종욱 (고려대학교) 이한성 (한국전자통신연구원) 정용화 (고려대학교) 박대희 (고려대학교)
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회논문지 : 소프트웨어 및 응용 정보과학회논문지 : 소프트웨어 및 응용 제39권 제2호
발행연도
2012.2
수록면
144 - 152 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 CCTV 등과 같은 감시 카메라 환경에서 실시간으로 유입되는 소리 정보를 이용하여, 비정상 상황을 탐지 및 식별하는 프로토타입 시스템을 제안한다. 제안된 시스템의 첫 번째 계층에서는 단일 클래스 SVM인 SVDD로 비정상 소리를 신속하게 탐지하여 관리자에게 알람 경고하고, 두 번째 계층의 SRC는 탐지된 비정상 소리를 ‘gun’, ‘scream’, ‘siren’, ‘crash’, ‘bomb’ 등으로 세분화 식별하여 관리자에게 보고함으로써 관리자의 위기 상황 대처 능력을 돕는다. 본 논문에서 제안하는 SVDD와 SRC를 혼합한 계층적 구조는 다음과 같은 특성을 갖는다. 첫째, 정상 소리 데이터만으로 학습한 SVDD를 이용하여 비정상 소리를 빠르게 탐지함으로써, 정상 소리에 대한 불필요한 비정상 소리 식별 연산을 수행하지 않는다. 둘째, 최근 얼굴 인식 분야에서 성공적인 업적을 보여주고 있는 강인한 SRC를 이용하여 비정상 소리를 식별함으로써, 안정적인 보안 감시 시스템 운용을 보장한다. 셋째, SRC 고유의 특성상 새로운 비정상 소리가 추가되더라도 전체 시스템을 재학습시킬 필요가 없는 시스템의 점증적 갱신이 가능하다. 정성적 분석을 포함한 실험 결과로 제안된 시스템의 효능을 밝힌다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 감시 카메라 환경에서의 계층적 비정상 소리 탐지 및 식별 시스템
4. 실험 및 결과 분석
5. 결론 및 향후 연구과제
참고문헌

참고문헌 (25)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2013-569-001481133