벽면 난류의 항력과 밀접한 관련이 있는 유동구조를 조사하기 위해 Reτ = 180, 395, 590 의 난류채널유동에 대한 직접수치모사를 수행하였다. 확률밀도함수를 조사하여 레이놀즈 전단응력에 가장 큰 기여를 하는 Q2 이벤트를 파악하였으며 Q2 이벤트의 각도의 변화가 y+ < 50 에서는 벽 단위로 스케일링되며, y/h > 0.5 에서는 채널의 높이로 스케일링 됨을 확인하였다. Q2 이벤트를 조건으로 하는 조건부 평균 유동장을 조사하여 레이놀즈 전단응력의 발생과 관련이 있는 유동구조는 주 유동방향의 보텍스 및 헤어핀 형상의 보텍스임을 보였다. 또한, 순간 유동장을 관찰하여 높은 레이놀즈 전단 응력의 분포가 이러한 보텍스 구조와 관련이 있으며 1.5 ~ 3h 의 크기를 갖는 대형유동구조를 구성함을 확인하였다.
Direct numerical simulations were carried out for turbulent channel flows with Reτ = 180, 395 and 590 to investigate the turbulent flow structure related to the Reynolds shear stress. By examining the probability density function, the second quadrant (Q2) events with the largest contribution to the mean Reynolds shear stress were identified. The change in the inclination angle of Q2 events varies with wall units in y+ < 50 and with the channel half height in y/h > 0.5. Conditionally averaged flow fields for the Q2 event show that the flow structures associated with Reynolds shear stress are a quasi-streamwise vortex in the buffer layer and a hairpin-shaped vortex in the outer layer. Three-dimensional visualization of the distribution of high Reynolds shear stress reveals that the organization of hairpin vortices in the outer layer having a size of 1.5~3 h is associated with large-scale motions with high Reynolds shear stress in the outer layer.