메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Won-Young Lee (Kyung Hee University) Min-Han Kim (Kyung Hee University) Chang Kyoo Yoo (Kyung Hee University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2008
발행연도
2008.10
수록면
2,616 - 2,621 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, a standardized model calibration method for the optimal parameter estimation of the ASM is proposed. We developed a kind of the calibration protocol of ASM 1 model based on parameter selection, design of experiments and parameter optimization using multiple response surface methodology. In this research, two softwares of WESTⓡ and MINITAP are used to model a waste water treatment process and optimize the model parameter and design of experiment. First, the most sensitive parameter set is determined by a new sensitivity analysis for considering the effluent quality index. Second, a multiple response surface methodology (MRS) is conducted for optimizing parameter estimation of ASM1 model. Because the proposed method is a multi-response model which is the suitable methods to estimate the model parameters in the ASM, it can simultaneously optimize the key parameters in the aspect of input-output model performance. The result of the model calibration protocol shows that it can select the key parameters of the ASM model and minimize the model error of the ASM model by a systematic sequence, which can save the much time in the modeling a process, improve the modeling performance of the ASM model and the prediction result of ASM. Since the proposed method is a kind of the calibration methodology, that is, protocol, it can be easily applied to a other ASM models, i.e., ASM2, 2d, 3 and also a full-scale plant.

목차

Abstract
1. INTRODUCTION
2. MATERIALS AND METHODS
3. RESULTS AND DISCUSSION
4. CONCLUSION
ACKNOWLEDGEMENT
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-569-000977621