메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Kajal Sharma (Kongju National University) Kwang-young Jeong (Kongju National University) Sung-Gaun Kim (Kongju National University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2011
발행연도
2011.10
수록면
944 - 947 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Vision is becoming more and more common in applications such as localization, autonomous navigation, path finding and many other computer vision applications. This paper presents an improved technique for feature matching in the stereo images captured by the autonomous vehicle. The Scale Invariant Feature Transform (SIFT) algorithm is used to extract distinctive invariant features from images but this algorithm has a high complexity and a long computational time. In order to reduce the computation time, this paper proposes a SIFT improvement technique based on a Self-Organizing Map (SOM) to perform the matching procedure more efficiently for feature matching problems. Experimental results on real stereo images show that the proposed algorithm performs feature group matching with lower computation time than the original SIFT algorithm. The results showing improvement over the original SIFT are validated through matching examples between different pairs of stereo images. The proposed algorithm can be applied to stereo vision based autonomous vehicle navigation for obstacle avoidance, as well as many other feature matching and computer vision applications.

목차

Abstract
1. INTRODUCTION
2. SCALE INVARIANT FEATURETRANSFORM (SIFT)
3. SELF-ORGANIZING MAP BASED FEATURE MATCHING
4. EXPERIMENTAL RESULTS AND DISCUSSION
5. CONCLUSION AND FUTURE WORK
ACKNOWLEDGMENT
REFERENCES

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-569-000913887