메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
홍초희 (강원대학교) 김학수 (강원대학교)
저널정보
한국콘텐츠학회 한국콘텐츠학회논문지 한국콘텐츠학회논문지 제12권 제12호
발행연도
2012.12
수록면
471 - 478 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
문서를 대상으로 한 다양한 감정 분류 연구가 진행되어 왔으며, 최근에는 트윗 감정 분류에 그대로 적용되고 있다. 그러나 이러한 연구들은 트윗의 구조, 이모티콘, 철자 오류 그리고 신조어와 같은 트윗의 특징을 고려하지 않아 좋은 성능을 보이지 못하고 있다. 본 논문에서는 기계학습을 기반으로 다양한 자질을(이모티콘 극성, 리트윗 극성, 사용자 극성, 대체 어휘)사용하여 실험하여 트윗 감정 분류 성능의 영향을 확인하였다. 기계 학습기 SVM(Support Vector Machine) 기반의 감정 분류 실험으로 이모티콘 극성 자질과 사용자 극성 자질이 트윗 감정 분류 모델의 성능 향상에 기여를 하는 것을 알 수 있었다. 이와 비교하여 리트윗 극성과 대체 어휘 자질은 트윗 감정 분류 모델에 큰 영향이 없는 것을 알 수 있었다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 감정 분류 시스템
Ⅳ. 실험 데이터 및 실험 결과
Ⅴ. 결론 및 향후 연구
참고문헌

참고문헌 (16)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-004-000569096