메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이환수 (카이스트) 임동원 (카이스트) 조항정 (카이스트)
저널정보
한국지능정보시스템학회 지능정보연구 지능정보연구 제19권 제1호
발행연도
2013.3
수록면
125 - 139 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 주목 받기 시작한 빅데이터 기술은 대량의 개인 정보에 대한 접근, 수집, 저장을 용이하게 할 뿐만 아니라 개인의 원하지 않는 민감한 정보까지 분석할 수 있게 한다. 이러한 기술이나 서비스를 이용하는 사람들은 어느 정도의 프라이버시 염려를 가지고 있으며, 이것은 해당 기술의 사용을 저해하는 요인으로 작용할 수 있다. 대표적 예로 소셜 네트워크 서비스의 경우, 다양한 이점이 존재하는 서비스이지만, 사용자들은 자신이 올린 수많은 개인 정보로 인해 오히려 프라이버시 침해 위험에 노출될 수 있다. 온라인 상에서 자신이 생성하거나 공개한 정보일 경우에도 이러한 정보가 의도하지 않은 방향으로 활용되거나 제3자를 의해 악용되면서 프라이버시 문제를 일으킬 수 있다. 따라서 본 연구는 사용자들이 이러한 환경에서 인지할 수 있는 개인정보의 과잉이 프라이버시 위험과 염려에 어떠한 영향을 주는지를 살펴보고, 사용자 저항과 어떠한 관계가 있는지 분석한다. 데이터 분석을 위해 설문과 구조방정식 방법론을 활용했다. 연구결과는 소셜 네트워크 상의 개인정보 과잉 현상은 사용자들의 프라이버시 위험 인식에 영향을 주어 개인의 프라이버시 염려 수준을 증가 시키는 요인으로 작용할 수 있음을 보여준다.

목차

1. Introduction
2. Related Literatures
3. Research Model and Methodology
4. Results
5. Conclusion
참고문헌
Abstract

참고문헌 (27)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-000-003068694