메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Kyu-hwan Kim (Pohang University of Science and Technology) Jae Jin Jeong (Pohang University of Science and Technology) Sang Jun Lee (Pohang University of Science and Technology) Seokbae Moon (Pohang University of Science and Technology) Sang Woo Kim (Pohang University of Science and Technology)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2012
발행연도
2012.10
수록면
1,675 - 1,678 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In the steel industry, numerical modeling of electric arc furnaces (EAFs) is an important method to improve the power quality. However, the complicated nature of EAFs makes this process rather difficult. In this study, the complex behavior of an EAF is analyzed using chaos theory and neural network. According to the embedding theorem, if the embedding dimension and delay time are chosen properly, the state can be reconstructed without a change in the dynamical properties. In particular, after proper selection of the embedding dimension and delay time, the state is reconstructed in the form of delay coordinates. The reconstructed state can be used to perform one-step prediction, which involves finding an appropriate mapping function from the state to time series values. Because a neural network is a good choice for this problem, several neural networks were tested and a multi-layer perceptron was selected here. With such a network, we can develop models of arc voltage, current, and resistance, with high accuracy.

목차

Abstract
1. INTRODUCTION
2. STATE RECONSTRUCTION
3. SIMULATION RESULTS
4. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0