메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김양석 (한국수력원자력) 이도환 (한국수력원자력) 김대웅 (한국수력원자력)
저널정보
대한기계학회 대한기계학회 논문집 B권 대한기계학회논문집 B권 제37권 제6호
발행연도
2013.6
수록면
551 - 558 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
서포트 벡터 머신(Support Vector Machine, SVM)은 학습용 데이터 집합이 확보되어 있을 경우, 매우 강력한 분류 알고리즘이다. 따라서 패턴인식은 물론 기계학습 분야에서 결함진단 도구의 하나로 이용되고 있다. 본 논문에서는 최적 특징과 SVM 을 이용하여 볼 베어링의 결함유형과 결함의 정도를 진단한 결과를 기술하였다. SVM 학습용 특징데이터에는 12 개의 시간영역 특징과 9 개의 주파수영역 특징들이 포함되어 있으며 이들 특징들은 다양한 베어링 결함조건에서 측정된 진동신호와 진동신호의 이산 웨이블렛 변환신호로부터 추출되었다.

목차

초록
Abstract
1. 서론
2. 베어링 결함 실험
3. Support Vector Machine
4. 베어링 결함 정도 진단
5. 결론
참고문헌

참고문헌 (13)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-500-002610220