메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
신승연 (서울대학교) 박상현 (서울대학교) 윤일동 (한국외국어대학교) 이상욱 (서울대학교)
저널정보
한국방송·미디어공학회 방송공학회논문지 방송공학회논문지 제18권 제3호
발행연도
2013.5
수록면
401 - 408 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 영상 내의 문맥 특징(context feature)과 외형 특징(appearance feature)을 함께 학습함으로써 의료영상 내의 비슷한 외형 특징을 가지는 장기들을 자동으로 검출하는 기법을 제안한다. 기존 검출 기법들은 외형 특징 정보만을 학습하여 분류기(classifier)를 생성하였기 때문에 의료영상 내에 외형이 비슷한 장기들이 다수 포함되어 있는 경우 검출 오류가 발생하였다. 제안하는 기법은 외형 특징을 이용하여 학습된 분류기를 통해 얻은 확률 값들을 바탕으로 관심 복셀(voxel) 주변의 확률 분포 특징을 반복적으로 학습함으로써 문맥 정보를 포함하는 분류기를 생성한다. 또한, 실험 단계(test stage)에서 ‘지역 기반 투표 방식’(region based voting scheme)을 도입함으로써 효율성과 정확성을 향상시킨다. 제안하는 기법의 성능 평가를 위해 SKI10 무릎 관절 데이터 셋 내에서 외형특징이 비슷한 대퇴골(femur)과 경골(tibia)을 검출하는 실험을 진행하였다. 실험 결과를 통해 제안하는 기법이 외형 특징만을 이용했던 검출 기법에 비해 개선된 검출 성능을 보이고 있음을 확인할 수 있었다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 문맥 정보를 이용한 검출 기법
Ⅲ. 실험 결과 및 분석
Ⅳ. 결론
참고문헌

참고문헌 (17)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-560-002544929