메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
임득용 (경희대학교) 이태정 (경희대학교) 김동술 (경희대학교)
저널정보
한국대기환경학회 한국대기환경학회지(국문) 한국대기환경학회지 제29권 제3호
발행연도
2013.6
수록면
297 - 306 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study used long-term air and weather data from 2000 to 2009 as raw data sets to develop regression models in order to estimate precipitation scavenging contributions of ambient PM<SUB>10</SUB> and NO₂ in Korea. The data were initially analyzed to calculate scavenging ratio (SR), defined as the removal efficiency for PM<SUB>10</SUB> and NO₂ by actual precipitation. Next, the effective scavenging contributions (ESC) with considering precipitation probability density were calculated for each sector of precipitation range. Finally, the empirical regression equations for the two air pollutants were separately developed, and then the equations were applied to test the model validity with the raw data sets of 2010 and 2011, which were not involved in the modeling process. The results showed that the predicted PM<SUB>10</SUB> ESC by the model was 23.8% and the observed PM<SUB>10</SUB> ESCs were 23.6% in 2010 and 24.0% in 2011, respectively. As for NO₂, the predicted ESC by the model was 16.3% and the observed ESCs were 16.4% in 2010 and 16.6% in 2011, respectively. Thus the developed regression models fitted quite well the actual scavenging contribution for both ambient PM<SUB>10</SUB> and NO₂. The models can then be used as a good tool to quantitatively apportion the natural and anthropogenic sink contribution in Korea. However, to apply the models for far future, the precipitation probability density function (PPDF) as a weather variable in the model equations must be renewed periodically to increase prediction accuracy and reliability. Further, in order to apply the models in a specific local area, it is recommended that the long-term oriented local PPDF should be inserted in the models.

목차

Abstract
1. 서론
2. 분석자료 및 방법
3. 결과 및 고찰
4. 결론
참고문헌

참고문헌 (2)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-530-003338705