메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
허경용 (동의대학교) 김광백 (신라대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제15권 제8호
발행연도
2011.8
수록면
1,659 - 1,664 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Fuzzy C-Means(FCM)는 군집화를 위해 널리 사용되는 알고리듬 중 하나로 다양한 응용분야에서 성공적으로 사용되어 왔다. 하지만 FCM은 여러 가지 단점을 가지고 있으며 초기 원형 설정이 그 중 하나이다. FCM은 국부 최적해에 수렴하므로 초기 원형 설정에 따라 군집화의 결과가 달라진다. 따라서 초기 원형의 설정은 군집화 결과 향상을 위해 중요하다. 이 논문에서는 이러한 FCM의 초기 원형 설정 문제를 해결하는 방안으로 커널 밀도 추정을 활용하는 방법을 제안한다. 커널 밀도 추정은 비모수적 분포들에도 사용할 수 있어 국부적인 데이터 밀도 추정에 유용하다. 제안한 방법에서는 커널 밀도 추정을 수행한 후 밀도가 높은 지역에 클러스터의 초기 원형을 설정하고 원형이 설정된 영역의 밀도를 감소시키는 과정을 반복함으로써 효율적으로 초기 원형을 선택할 수 있다. 제안된 방법이 일반적으로 사용되는 무작위 초기화 방법에 비해 효율적이라는 사실은 실험 결과를 통해 확인할 수 있다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. FCM의 초기 원형 설정
Ⅲ. 실험 결과
Ⅳ. 결론
참고문헌

참고문헌 (9)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-550-002863830