While accelerating, bicycle frames are subject to torsion forces and deformation. In this study, bicycle frame durability was evaluated by using structural, fatigue, and vibration experiments. Three types of models were designed by changing the frame configurations according to the shape and direction of a bicycle frame design. Because maximum equivalent stress was greatest at the saddle and at connected parts in Models 1, 2, and 3, these frame sections were most vulnerable to failure. Model 2 was the least safe, due to the increased total deformation and equivalent stresses in the top tube horizontal to the ground. Based on vibration and fatigue analysis results, Model 2 was also determined to be the least safe frame, because the head tube was placed slightly higher above the seat tube and inclined to 10°. These study results can be utilized in the design of bicycle frames by investigating prevention and durability against damage.