메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Ping Zheng (Harbin Institute of Technology) Pengfei Wang (Harbin Institute of Technology) Yi Sui (Harbin Institute of Technology) Chengde Tong (Harbin Institute of Technology) Fan Wu (Harbin Institute of Technology) Tiecai Li (Harbin Institute of Technology)
저널정보
전력전자학회 JOURNAL OF POWER ELECTRONICS JOURNAL OF POWER ELECTRONICS Vol.14 No.1
발행연도
2014.1
수록면
61 - 73 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Multiphase machines are characterized by high power density, enhanced fault-tolerant capacity, and low torque pulsation. For a voltage source inverter supplied multiphase machine, the probability of load imbalances becomes greater and unwanted low-order stator voltage harmonics occur. This paper deals with the PWM control of multiphase inverters under unbalanced load conditions and it proposes a novel near-five-vector SVPWM algorithm based on the five-phase six-leg inverter. The proposed algorithm can output symmetrical phase voltages under unbalanced load conditions, which is not possible for the conventional SVPWM algorithms based on the five-phase five-leg inverters. The cause of extra harmonics in the phase voltages is analyzed, and an xy coordinate system orthogonal to the ab z coordinate system is introduced to eliminate low-order harmonics in the output phase voltages. Moreover, the digital implementation of the near-five-vector SVPWM algorithm is discussed, and the optimal approach with reduced complexity and low execution time is elaborated. A comparison of the proposed algorithm and other existing PWM algorithms is provided, and the pros and cons of the proposed algorithm are concluded. Simulation and experimental results are also given. It is shown that the proposed algorithm works well under unbalanced load conditions. However, its maximum modulation index is reduced by 5.15% in the linear modulation region, and its algorithm complexity and memory requirement increase. The basic principle in this paper can be easily extended to other inverters with different phase numbers.

목차

Abstract
Ⅰ. INTRODUCTION
Ⅱ. TOPOLOGY OF FIVE-PHASE SIX-LEG INVERTER
Ⅲ. NEAR-FIVE-VECTORS SVPWM ALGORITHM
Ⅳ. DIGITAL IMPLEMENTATION OF NFV-SVPWM ALGORITHM
Ⅴ. COMPARISON WITH EXISTING PWM ALGORITHMS
Ⅵ. SIMULATION RESULTS
Ⅶ. EXPERIMENTAL RESULTS
Ⅷ. CONCLUSIONS
REFERENCES

참고문헌 (20)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2015-500-000998516