메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김희종 (한양사이버대학교) 김형도 (한양사이버대학교)
저널정보
한국정보기술학회 한국정보기술학회논문지 한국정보기술학회논문지 제12권 제1호(JKIIT, Vol.12, No.1)
발행연도
2014.1
수록면
155 - 164 (10page)
DOI
10.14801/kiitr.2014.12.1.155

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
그라디언트 부스팅 알고리즘은 손실 함수의 경사도를 바탕으로 다수의 약한 예측 모형들을 단계적으로 생성하여 앙상블 방식으로 결합함으로써 강한 예측 모형을 생성하는 부스팅 기법을 사용한다. 해석 가능한 결과를 제시하며, 결손된 값이 있는 경우에도 정보 손실 없이 예측 가능하고, 처리 과정에서 자동적으로 특징 변수가 선택되는 등의 장점을 가지고 있다. 이러한 그라디언트 부스팅 알고리즘을 대출자 또는 대출희망자가 채무를 이행하지 않을 가능성을 예측하는 채무 불이행 예측에 적용하는 연구는 매우 부족한 상황이기에, 이 논문에서는 그 성능을 다른 알고리즘들과 비교 평가하고, 채무 불이행 데이터 집합의 중요한 특성 중 하나인 클래스 불균형 문제에 대한 해결책을 검토하였다. 채무 불이행 예측에서 그라디언트 부스팅은 AUC를 기준으로 가장 우수한 결과를 보여주었으며, 클래스 불균형 문제 해결 기법과 그라디언트 부스팅 알고리즘을 결합하여 G-평균과 F척도에서 의미 있는 개선이 가능하였다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 그라디언트 부스팅을 이용한 예측 모형
Ⅳ. 실험 설계
Ⅴ. 실험 결과 및 토의
Ⅵ. 결론 및 향후 연구 방향
References

참고문헌 (18)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2015-560-001165677