메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Junke Wu (Chongqing University) Luowei Zhou (Chongqing University) Xiong Du (Chongqing University) Pengju Sun (Chongqing University)
저널정보
대한전기학회 Journal of Electrical Engineering & Technology Journal of Electrical Engineering & Technology Vol.9 No.3
발행연도
2014.5
수록면
970 - 977 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, the artificial neural network is used to predict the junction temperature of the IGBT power module, by measuring the temperature sensitive electrical parameters (TSEP) of the module. An experiment circuit is built to measure saturation voltage drop and collector current under different temperature. In order to solve the nonlinear problem of TSEP approach as a junction temperature evaluation method, a Back Propagation (BP) neural network prediction model is established by using the Matlab. With the advantages of non-contact, high sensitivity, and without package open, the proposed method is also potentially promising for on-line junction temperature measurement. The Matlab simulation results show that BP neural network gives a more accuracy results, compared with the method of polynomial fitting.

목차

Abstract
1. Introduction
2. Principles of Junction Temperature Evaluation
3. Experimental Testing System
4. Design and Modeling of BP Neural Network
5. Conclusions
References

참고문헌 (25)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2015-500-001462715