메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Soumadip Ghosh (Academy Of Technology) Sushanta Biswas (University of Kalyani) Debasree Sarkar (University of Kalyani) Partha Pratim Sarkar (University of Kalyani)
저널정보
한국산학기술학회 SmartCR Smart Computing Review 제4권 제1호
발행연도
2014.2
수록면
34 - 43 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Classification techniques are used on large databases to develop models describing different data classes. Such analysis can provide deep insight for better understanding of different large-scale databases. Studies related to knowledge acquisition and effective knowledge development are also very popular in the remote sensing field with satellite imagery datasets. In any remote sensing research, the decision-making process mainly depends on the effectiveness of the classification process. Efficient classification techniques were developed and applied to the Statlog (Landsat Satellite) database at the University of California, Irvine Machine Learning Repository to identify six land type classes. We used three different classification algorithms on the large satellite imagery: multilayer perceptron backpropagation neural network (MLP BPNN), support vector machine (SVM), and k-nearest neighbor (k-NN). This research study aimed to evaluate the performance of these classification algorithms in the prediction of the classified lands from this large set of satellite imagery. We used different performance measures, such as classification accuracy, root-mean-square error, kappa statistic, true positive rate, false positive rate, precision, recall, and F-measure to evaluate the performance of each classifier. Among the three classification techniques applied, MLP BPNN turned out to be the best; next was k-NN, followed by SVM.

목차

Abstract
Introduction
Related Work
Methodology
Methodology
Conclusion
References

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2015-500-002466791