메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
최선욱 (인하대학교) 이종호 (인하대학교)
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 한국지능시스템학회 논문지 제24권 제2호
발행연도
2014.4
수록면
166 - 172 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
이미지를 각각의 카테고리로 분류하는 일은 컴퓨터 비전 분야의 중요한 문제 중 하나이다. 그러나 이미지에 존재하는 가변성, 모호성, 스케일 문제 등으로 인해 매우 도전적인 문제라고 할 수 있다. 본 논문에서는 장면 이미지를 구성하는 시멘틱 속성들의 고차원의 상호작용 관계를 고려 가능한 하이퍼그래프 기반의 모델링 기법을 제시하고 이를 장면 이미지 분류에 적용한다. 각 장면 카테고리에 준최적화된 하이퍼그래프를 생성하기 위해 확률 부분공간 기법에 기반을 둔 탐색기법을 제안하고, 이들 부분 공간 내에 속한 시멘틱 속성들의 발현량을 축약하기 위한 우도비 기반의 선형 변환 기법을 제안한다. 제안한 기법의 우수성을 검증하기 위한 실험을 통하여 제시한 기법을 통해 생성된 특징 벡터의 분별력이 기존의 기법들에서 사용된 특징 벡터들의 분별력보다 우수함을 보인다. 또한 제안한 기법을 장면 분류 데이터에 적용한 결과 기존의 기법들과 비교하여 경쟁력 있는 분류 성능을 보인다. 제안 한 기법은 이미지 분류에서 일반적으로 사용 되는 기법인 BoW+SPM 모델과 비교하여 3~4%이상의 성능 향상을 보였다.

목차

요약
Abstract
1. 서론
2. 하이퍼그래프 기반의 이미지 모델링
3. 확률적 부분집합 탐색 기법
4. 우도비 기반 특징 벡터 생성
5. 실험 및 결과
6. 결론 및 향후 연구
References

참고문헌 (15)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2015-004-002796782