메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김현기 (수원대학교) 진용탁 (수원대학교) 오성권 (수원대학교)
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 한국지능시스템학회 논문지 제24권 제2호
발행연도
2014.4
수록면
173 - 178 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 연구에서는 ASM기반 (2D)<SUP>2</SUP> 하이브리드 전처리 알고리즘을 이용한 얼굴인식 분류기와 그것의 설계방법론을 소개한다. 얼굴인식을 위한 이미지는 외부 환경에 쉽게 영향을 받기 때문에, 전처리 단계로 이러한 문제를 해결하기 위해서 ASM을 사용하였다. 특히 사람 얼굴의 특징 추출을 목적으로 널리 이용되고 있다. ASM을 이용해 얼굴영역을 추출 한 뒤 PCA와 LDA를 이용한 (2D)<SUP>2</SUP> 하이브리드 전처리 알고리즘을 이용하여 차원을 축소한다. 전처리 알고리즘을 통한 얼굴데이터는 제안된 다항식 기반 방사형 기저함수 신경회로망의 입력으로 사용된다. 기존의 신경회로망과는 달리 제안된 지능형 패턴 분류기는 강인한 네트워크 특성을 가지며, 예측능력이 우수할 뿐만 아니라 다차원 입출력에 대한 문제도 해결했다. 분류기의 중요한 필수 설계 파라미터(행의 고유벡터의 수, 열의 고유벡터의 수, 클러스터의 수, 퍼지화 계수)는 ABC알고리즘에 의해 최적화 되어진다. 얼굴인식에 많이 사용되는 Yale과 AT&T를 사용하여 인식률을 평가하였다.

목차

요약
Abstract
1. 서론
2. 얼굴데이터의 전처리 과정
3. 제안된 지능형 패턴 분류기
4. 시뮬레이션 및 결과
5. 결론 및 향후과제
References

참고문헌 (11)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0