메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는, 원거리 음성인식을 위한 서브밴드 필터링 기반의 빠르고 효율적인 에코제거 시스템을 제안한다. 제안하는 에코제거 시스템은 우선 채널간 유사도 (correlation) 가 높을 경우 적응필터가 오작동하는 것을 방지하기 위해 spatial decorrelation 을 적용하게 된다. 그리고 tree 형태를 가지는 IIR filterbank 기반의 subband 구조를 채택함으로써, 적은 차수로도 효과적인 analysis, synthesis 필터링을 수행할 수 있도록 한다. 이 과정에서 불가피하게 발생하는 서브 밴드간 spectral aliasing은 notch filter를 적용해 해결할 수 있다. 또한 적응 필터로는 improved proportionate normalized least-mean-square (IP-NLMS) 알고리즘을 사용해 수렴속도 및 에코제거 성능에서 우수함을 확인하였다. 마지막으로 decision-directed estimation 기반의 residual echo suppressor를 적용해 잔여 에코를 제거하게 된다. 본 논문에서는 각 단계를 구성하게 된 이론적인 배경을 소개하고, 실제 에코가 존재하는 환경에서 ERLE, 원거리 음성 인식률, computational complexity를 통해 제안하는 에코제거 시스템의 효과를 입증하도록 한다.

목차

ABSTRACT
1. 서론
2. Spatial Decorrelation
3. Subband Adaptive Filtering
4. Notch Filter
5. Residual Echo Suppression
6. 실험 결과
7. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2015-530-002891687