메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2014
발행연도
2014.10
수록면
1,076 - 1,081 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Ground provides useful and basic information such as traversal regions and location of 3D objects. The given point cloud may contain a point not only from ground, but also from other objects such as walls and people. Those points from other objects can disturb to find and identify a ground plane. In this paper, we propose robust and fast ground plane detection with an asymmetric kernel and RANSAC. We derive a probabilistic model of a 3D point based on an observation that a point from other objects is always above the ground. The asymmetric kernel is its approximation for fast computation, which is incorporated with RANSAC as a score function. We demonstrate effectiveness of our proposed method as quantitative experiments with our on-road 3D LiDAR dataset. The experimental result presents that our method was sufficiently accurate with slightly more computation. Finally, we also show our ground detection’s application to augmented perception and visualization for drivers and remote operators.

목차

Abstract
1. INTRODUCTION
2. ROBUST GROUND PLANE DETECTION
3. EXPERIMENTS
4. APPLICATION TO AUGMENTED PERCEPTION
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0